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Abstract 

The weighted least-squares method cannot correctly be 
used when measurements have errors given by counting 
statistics. The usual procedure results in bias in the 
values and errors in the calculated variances of the 
parameters. The maximum-likelihood method requires 
only a minor change in the least-squares equations and 
is generally thought to have more desirable properties 
for its estimates. 
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Introduction 

Suppose a functional relationship exists between two 
measurable quantities Y0 and x given by 

yo=f(Oo,x) ,  (1) 

where the 00 are the true, but unknown, parameters, 
and suppose we have a list of measurements y(x )  of 
Yo(X) at various values of the independent variable x. 
We assume the x ' s  to be measured precisely but the y's 
to be imprecise. 

Y =  Yo + e,~ (2) 

5" Vector and matrix notation used throughout. 
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where E are the errors in the measurements. If we know 
the (proportional) variance matrix, V, of the measure- 
ments ,  

V= E[{y-- E(y)} {y-  E(y)}tl, (3) 

where E[u] refers to the expectation value of u, and the 
superscript t refers to the transpose of a matrix, then we 
can evaluate the (weighted) least-squares (LS) esti- 
mates, 0LS, of the parameters 0 0. These are obtained by 
n~mmlzmg 

S ---- ( y -  :~)t W ( y -  Y) (4) 

with W = V- '  and :~(x)= f(0,x). 
If f ( O , x )  is linear in 0 

= T 0 ,  ( 5 )  

with T the design matrix 

Tkl= a f (O,  Xk)/OOi, (6) 

then the 0LS are given by 

0LS = (T tWT)- '  TtWy. (7) 

The 0LS have some desirable properties as estimates 
of 0 o (Hamilton, 1964; Bard, 1974). These properties 
only hold exactly if f ( O , x )  is linear in 0 and if the errors 
have zero mean, E[61 = 0. {See Price (1979) for a 
discussion of parameter bias when f is non-linear or 
when E[ 8] =~ 0. } 

In this case Y0 = TOo and the substitution of (2) in (7) 
gives 

0LS : 0 0 -4- (T tWT)  -1 TtWs.  (8) 

Now if W (and T) is a constant matrix (i.e. would 
not change if the experiment were to be repeated 
indefinitely), as it is if W -- V -1, then 

E [ OLS ] = 0 0, (9) 

i.e. 0LS is an unbiased estimate of 0 0. 
Also the variance of the estimates 0LS is given by 

var (0LS) = E[ {0LS -- E[~LS] } {0LS -- E[~LS] }t] 

var'(~LS ) = (TtWT) - 1 T t W V W T ( T t W T )  -l  (10) 

(assuming the constancy of W and T), and if V = 
0-2 W--1 

var (OLS) = a 2 ( T t W T )  -1 = (T tV -1 T) -1. (11) 

These are well known results and it can be shown 
that when W is proportional to V -1 (Hamilton, 1964; 
Bard, 1974) the 0LS have minimum variance amongst 
all linear, unbiased estimates of 00. 

If W is a constant matrix but not proportional to 
V -1, (8) and (9) still result in 0 being an unbiased 
estimate of 00, but the variance of ~ is given by (10) 
rather than (11). It can be shown (Tukey, 1975) that if 

Wu 
A < ~ < rA (12) 

- V ~ l  - 

then the variance of the least-squares estimate of any 
linear combination of the parameters is 

( r +  1) 2 
< ~  (13) 
- 4r 

times as large as if the proper weights were used. This is 
small comfort however, as unless V is known we cannot 
calculate the true variance (10) or the smaller variance 
(11), and we do not know the relationship between the 
true variance and the inverse of the normal equations 
matrix, (TtWT) -1. 

Q u a n t u m  count ing  statistics 

We now consider the application of the method of least 
squares to counts of radiation quanta, such as X-ray 
photons or neutrons. Observed count rates are 
theoretically distributed (neglecting instrumental ef- 
fects) as a Poisson distribution 

p(y) = [exp (-y0) y~J/yt,  (14) 

where p(y) is the probability distribution function for y. 
As is well known this distribution has all moments 
equal to Y0. Thus a least-squares refinement on the 
measurements y requires knowledge of the variance of 
each y and hence of each Y0. Strictly speaking then, we 
cannot perform least squares when the errors in the 
measurements obey counting statistics. 

However, for comparison with the maximum- 
likelihood (ML) equations derived below, we write 
down the LS equations assuming we know the 
variances Y0. The ~LS are the solutions to c5S/c50 i = 0 
for all i, i.e. 

1 [ Of kl =0 
y., jo ., for all i. (15) 

Here f~ means f (O,  xg) and we have dropped the matrix 
notation. Now if f (0 ,x )  is non-linear in 0 we would 
probably approximate the variance matrix of ~LS by the 
inverse of either the Gauss or Newton curvature 
(normal equations) matrices, i.e. 

var (0rs) __ a -1 (16) 

with 

1 [~fk ~fk] (17) 

or 

1 [,v,, 1 
~ =  ~k Yo.---'~ [ 80, c~0, ( y , - - ~ L S . k ) ~ ] 0  f (18) 
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If f is linear then ~ = ~v = TtWT and (16) is an 
equality. 

It is not unusual for measurements subject to 
counting-statistics errors to be analysed by least 
squares where the variances of the counts are taken to 
be the observed count, y, rather than the expectation 
value of this, Y0. This results in biased parameter 
estimates [W in (8) is not a constant matrix]. This has 
recently been noted again, by Wilson (1976). The bias 
is in such a direction that the fitted curve y is 'pushed 
low', since counts which are lower than their expec- 
tation value have higher weight than counts which are 
higher than their mean. In fact if we make enough 
measurements (i.e. as our sample size n goes to oo) we 
will certainly obtain a number of measurements of a 
zero count, which will force the fitted curve to be 
identically zero. Bevington (1969) claims that the area 
under the curve is underestimated by an amount 
approximately equal to the residual, S. 

When P0'k) is a Poisson distribution as given by (14) 
the ML equations become 

log L(y,0) -- Z [--fk(0) + YklOg fk(0) -- 1ogyfl]; (21) 
k 

equating cO(logL)/O0 = 0, we find that the 0ML are 
solutions to 

1 [(y Ofk] = 0  foralli .  ( 2 2 )  

k 

The variance matrix DML = var(0ML ) of these 
e s t i m a t e s  0ML cannot be simply calculated for finite 
sample sizes. However, it is known (Kendall & Stuart, 
1967) that asymptotically it is given by 

[ (i')asympt'~--I = E , (23) 
"'J j 

which is easily evaluated for the Poisson distribution as 

Maximum-likelihood estimates of 00 

If the functional form of the probability distribution 
function p(y) is known, 

PO') = P O',YoAOo), (19) 

where Y0 and possibly some additional parameters ~00 
(e.g. the variance) are unknown, and if we have the 
expression (1) for Y0, then the ML estimates for 00 and 
~0o can be computed (Bard, 1974; Kendall & Stuart, 
1967). If the measurements, Yk, are independent we 
maximize the likelihood function 

L(y,O,o) = 1-[ p[Y~,,f(O,xk),O] (20) 
k 

resulting in estimates 0ML, 6ML for the parameters. 
ML estimates 0ME also have some desirable proper- 

ties (Kendall & Stuart, 1967; Bard, 1974) which 
generally seem to be more favoured by the statisticians 
than those of the LS estimates. In general the 0ME are 
non-linear estimates, which allows their variance to be 
less than that of the OLS" They are asymptotically (i.e. as 
the sample size, or number of measurements, n, goes to 
infinity) unbiased; for finite sample sizes their bias is of 
the order n -1. Theoretical lower bounds to the variance 
of an estimator (the minimum variance bound, MVB) 
can be derived and the ML estimates asymptotically 
achieve this MVB. 

If P(Yk) are normal distributions with known 
variances a~ then it is easy to show that 0ME = 0LS. 
When the a~, are totally unknown the method cannot be 
used as there are more unknown parameters (the 00 and 
the ak'S ) than observations. 

(oag[mpt')T~' = ~k ~ ['~/-~JJ'o" (24) 

Expression (22) is seen to be obtained from (15) by 
the replacement of the true variance Yo,k by the 
calculated variance fk. Since Y0 is unknown, ex- 
pressions (17), (18) and (24) are uncalculable. Inspec- 
tion of these indicates, however, that for large sample 
sizes the variance of the 0ME should be approximately 
given by the inverse of the matrices a GML or a NML 
where 

(17') 

and 

[  Aefk 
'J YML,k ~ 0  i ~Oj 

O'k- PMI.,,,) 

(18') 

These expressions are obtained from (17) and (18) by 
replacing Y0,k by fiMU,k in the weights, and by evaluating 
the fitted values ~ and their derivatives at the 0ME rather 
than at the 0us. 

In general the presence of ~ in the weights results in 
the ML procedure being non-linear, even when f(O,x) 
is linear in 0. A simplification occurs in the case when 
we are seeking to estimate a constant background, 
when 

Yo = f(Oo, x ) =  0o" 
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In either method the weights are constant and thus (15) 
and (22) result in 

0, s =  

with variance 

var (~) = O°/n 

and estimated variance given by (17') or (18') as 

a - l =  O/n. 

Conclusions 

The weighted LS estimator, which possesses some 
desirable properties, cannot properly be used when the 
errors in the measurements follow a Poisson distri- 
bution. An attempt to do so by replacing the true 
variances Y0.k by Yk (i.e. the 'true' mean count rate by 
the observed count rate) results in a bias which will 
primarily affect a scale factor. The ML estimator can 
be used and requires only a minor change (using Yk, the 
calculated count rate, as the variance) in the LS 
equations. ML estimators also have some desirable 
properties which generally seem to be preferred to those 
of LS. 

1 Wilson (1976) suggests using X(Yk + 23~k) as the 
variance of y~ We recommend the use of the ML 
method with its well studied properties. 

intensities less background) at best and thus do not 
have errors given by the Poisson distribution. Wilson 
(1978) has given the error distribution of a variable 
which is the difference between two Poisson-distri- 
buted variables (see also Wilson, 1979). We have not 
proved in this paper that the ML estimation procedure 
for this case simply requires the exchange of calculated 

.. 

intensities for observed intensities in the LS weighting 
schemes. Nevertheless, we have pointed out (see Intro- 
duction) that the use of observed intensities in LS 
weighting schemes results in a non-constant weight 
matrix and thence to parameter bias. Similarly we have 
established that we do not know (from a single 
observed intensity) an unbiased estimate of the 
reciprocal variance, and thus we cannot properly use 
weighted least squares. The relative complexity of 
Wilson's expressions (which themselves may not 
adequately describe the true error distribution of our 
intensities) suggests that a formal answer to this 
problem may be both difficult to obtain and complex to 
implement. In lieu of the formal answer being obtained 
the author suggests a cautious use of the answer 
suggested by this paper - i.e. the replacement of 
calculated for observed variables in weighting schemes. 

The probable insensitivity of the result to small 
changes in calculated intensities suggests that comput- 
ing time could be reduced by only calculating the 
weights (from the calculated intensities) once or twice 
near the beginning of refinement and once or twice near 
the end. 

The author acknowledges helpful discussions with 
M. S. Lehmann. 

Addithgnal note: Comments made to the author since 
the submission of this paper suggest the worth of 
clarifying exactly when these results can be used in 
crystallographic refinements. 

We have assumed (equations 2 and 14) that the 
observed variables have errors given by the Poisson 
distribution. Such is the case when the observed 
variables are 'raw' count rates, and the model allows 
for all sources of counts received by the detector, 
including background (see Sabine & Clarke, 1977). 
There are a number of other refinement situations (e.g. 
a background refinement) where the method can be 
used. 

Structure refinements from single-crystal data 
usually have as observed variables net intensities (gross 
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